
Combinatorial Networks
Week 2, March 18-19

Partially ordered set

Let X be a finite set.

• Definition. R is called a relation on set X, if R ⊂ X ×X.

Here X ×X := {all ordered pairs (x, y) : x, y ∈ X} denotes the Cartesian product.

• If (x, y) ∈ R, then we will write it as xRy.

• Definition. A partially ordered set (or poset for short) is an odered pair (X,R), where X
is a finite set and R is a relation on X that satisfies the following properties:

(1) R is reflexive: xRx for any x ∈ X;

(2) R is antisymmetric: xRy and yRx imply that x = y. (In other words, for distince
x, y ∈ X, at most one of xRy, yRx can occur.)

(3) R is transitive: xRy and yRz imply that xRz.

• Example. Consider the poset (X,R), where X := 2[n] and relation R is defined according
to the inclusion relationship: if A ⊂ B, then (A,B) ∈ R or ARB.

We will express this important poset as (2[n],⊂) from now on.

• We often use “�” to replace relation “R”, when this ordering � is clear from the context.
For example, x � y means xRy; poset (X,�) is just (X,R).

We write x ≺ y, if x � y and x 6= y.

• If x ≺ y, then x is called an predecessor of y.

• We say x ∈ X is a minimal element of poset (X,�), if there is no predecessor of x.

• Definition. Let (X,�) be a poset. We say element x is an immediate predecessor of
element y, if

(i) x ≺ y, and

(ii) there is no element t ∈ X such that x ≺ t ≺ y.

If x is an immediate predecessor of y, then we write it as x� y. Note that x� y does imply
that x ≺ y.

• Fact. For any two distinct elements x, y in poset (X,�), x ≺ y if and only if there exist
finite many elements x1, x2, ..., xk ∈ X such that x� x1 � x2 � . . .� xk � y.

Note that k can be equal to 0 here.

• Proof. One direction is easy: if x�x1�x2� . . .�xk�y, then x ≺ x1 ≺ x2 ≺ . . . ≺ xk ≺ y,
by transitivity we get x ≺ y.

For any pair x ≺ y, define Mxy := {t ∈ X : x ≺ t ≺ y} to be a subset of X.

1



We prove “the other direction” by induction on the size of Mxy. Consider a pair x ≺ y.
Base case: if |Mxy| = 0, then this means there is no t ∈ X such that x ≺ t ≺ y, therefore
x� y and this corresponds to the case k = 0.

Now assume that “the other direction” holds for all pairs a ≺ b with |Mab| < n. Let x ≺ y
with |Mxy| = n ≥ 1. Pick any t ∈Mxy, then x ≺ t ≺ y.

We consider Mxt and Mty. It is not hard to see that Mxt ⊂Mxy−{t} and Mty ⊂Mxy−{t}
by transitivity. So |Mxt| < n, |Mty| < n, then we are able to apply induction on pairs x ≺ t
and t ≺ y. By induction, there exists finite many elements x1, ..., xk, y1, ..., yl such that
x� x1 � . . .� xk � t and t� y1 � . . .� yl � y, implying that

x� x1 � . . .� xk � t� y1 � . . .� yl � y.

This completes the proof.

• One of the nice properties about poset is that we can express any poset in a digram!

Definition. The Hasse digram of a poset (X,�) is a drawing in the plane such that

(i) each element of X is drawn as a node, and

(ii) each pair x, y with x� y is connected by a line segement, and

(iii) if x� y, then the node x appears lower in the plane than the node y.

• Exercies. We draw the Hasse digram for the poset (2[3],⊂). Note that there should be 8
nodes as there are 8 subsets in 2[3]. Draw it again on your own.

• For any poset, we can express it by Hasse diagram. On the other hand, given a Hasse
diagram, this diagram also defines a poset.

The fact that x ≺ y if and only if there exist finite many elements x1, x2, ..., xk ∈ X such
that x� x1 � x2 � . . .� xk � y now can be restated as: x ≺ y if and only if we can find a
path in Hasse diagram from nod x to nod y, strictly from bottom to top.

• Definition. Let P = (X,�) be a poset.

(1). For two distinct elements x, y ∈ X, if x ≺ y or y ≺ x, then we say x, y are comparable;
otherwise, x, y are incomparable.

(2). Set A ⊂ X is called an antichain (or independent set) of poset P , if any pair of distinct
elements of A are incomparable. Denote α(P ) to be the maximum over all antichains A of
|A|, which is also called the width of P .

(3). Set A ⊂ X is called a chain of poset P , if any pair of distinct elements of A are
comparable. Denote ω(P ) to be the maximum over all chains A of |A|, which is also called
the height of P .

Understand above definitions in Hasse diagrams (see examples on page 55 of textbook). In
particular, ω(P ) means the maximal length of a path (directly from bottom to top) in its
Hasse diagram.

• Fact 1. The set of minimal elements of poset P = (X,�) is always an antichain of P .

Recall that an element x ∈ X is minimal, if there is no other y ∈ X such that y ≺ x. This
fact easily follows by definition and will play an important role in the proof of the following
theorem.
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• Theorem. For any poset P = (X,�), we have α(P ) · ω(P ) ≥ |X|.

• Proof. We inductively define a sequence of posets Pi, 1 ≤ i ≤ l, as following. Let P1 =
(X,�1) (here �1=�, so P1 = P ), and let M1 be the set of all minimal elements of P1. Now
assume that P1, P2, ..., Pk are all defined and let Mi be the set of all minimal elements of
Pi. We use �k+1 to denote the ordering � resticted on set X − ∪ki=1Mi; let poset Pk+1 :=
(X − ∪ki=1Mi,�k+1). We proceed the above inductive steps until X = M1 ∪M2 ∪ ... ∪Ml.

When the inductive step ends, we see that sets M1, ...,Ml form a partition of X. Moveover,
each Mi is an antichain of poset Pi (by Fact 1) and thereby an antichain of poset P , therfore
each |Mi| ≤ α(P ). Next we want to show that there exists a chain x1 ≺ x2 ≺ ... ≺ xl, where
xi ∈Mi, which will be a consequence of the following claim.

Claim: for any x ∈Mk+1 for any k = 1, ..., l−1, there exists a y ∈Mk such that y ≺ x. To see
this, note that x ∈Mk+1 implies: x is a minimal element of Pk+1 = (X−∪ki=1Mi,≺k+1) and
x /∈Mk. Therefore x has a predecessor y in Pk but not in Pk+1, therefore y ∈ X −∪k−1i=1Mi

and y /∈ X − ∪ki=1Mi, implying that y ∈Mk (with y ≺ x). This proves claim.

Now we pick an element xl ∈ Ml. Repeatly applying the claim, we see that there exists
xi ∈Mi such that x1 ≺ x2 ≺ ... ≺ xl−1 ≺ xl. Therefore, ω(P ) ≥ l.
We get that |X| = | ∪li=1 Mi| =

∑l
i=1 |Mi| ≤ l · α(P ) ≤ ω(P ) · α(P ).

Eroős-Szekeres Theorem

• We proved that α(P )·ω(P ) ≥ |X| for any poset P = (X,�). We now see one nice application
of this theorem.

• Definition. Consider a sequence (x1, x2, ..., xn) of real numbers of length n. A subsequence of
length m is of the form (xi1 , xi2 , ..., xim), where indices i1 < i2 < ... < im. This subsequence
is monotone, if either xi1 ≤ xi2 ≤ ... ≤ xim or xi1 ≥ xi2 ≥ ... ≥ xim .

For example, in sequence 138795624, 18956 is a subsequence but not monotone.

• Erdős-Szekeres’ Theorem. Any sequence (x1, x2, ..., xn2+1) of real numbers of length
n2 + 1 contains a montone subsequence of length n+ 1.

• Proof. Given the sequence (x1, x2, ..., xn2+1), we define a poset P = (X,�), where X =
{1, 2, ..., n2 + 1} and ordering � on set X is defined by:

i � j if and only if i ≤ j and xi ≤ xj .

It is easy to verify that P = (X,�) indeed is a poset as � is reflexive, antisymmetric and
transitive.

Therefore, we have α(P ) · ω(P ) ≥ |X| = n2 + 1, implying that either α(P ) ≥ n + 1 or
ω(P ) ≥ n+ 1.

Case 1: we have ω(P ) ≥ n+ 1.

Then we have a chain of P that i1 � i2 � ... � in+1. By definition of �, we get xi1 ≤
xi2 ≤ ... ≤ xin+1 and i1 ≤ i2 ≤ ... ≤ in+1 (in fact i1 < i2 < ... < in+1 as they are disctinct).
Therefore we find a monotone subsequence of length n+ 1 (it is increasing).

Case 2: we have α(P ) ≥ n+ 1.
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We have an antichain {i1, i2, ..., in+1}. Without losing of generality, we assume that i1 <
i2 < ... < in+1. Beacuse each pair ij < ik are incomparable, we get xij > xik whenever
j < k. Therefore we get xi1 > xi2 > ... > xin+1 , which is a monotone subsequence of length
n+ 1 (it is strictly decreasing). This completes the proof of Erdős-Szekeres’ Theorem.

• Exercise. Prove the following generalization of Erdős-Szekeres’ Theorem:

For any integers k, l ≥ 2, any sequence of real numbers of length kl + 1 contains either
a strictly decreasing subsequence of length l + 1 or a increasing (not neccessnary strictly
increasing) subsequence of length k + 1.

• Note that when k = l = n, the above statement is the same as Erdős-Szekeres’ Theorem.

Ramsey’s Theorem on Graphs

• We turn to study a new area: Ramsey theory, which is similar to Erdős-Szekeres’ Theorem
in the principle of “Order from disorder”.

Instead of sequences, now we focus on other combinatorical objects: graphs (complete
graphs more explicitly).

• We will first look at a rather simple setting: A party of six.

Fact 1. Suppose a party has six participants. Participants may know each other or not.
Then, there must exist 3 participants who know each other or don’t know each other.

Proof. We contruct a complete graph on six vertices, each of which stands for one of the
6 participants. We then color the edges of this K6 by colors blue and red in the following
way: if i, j know each other, we color the edge (i, j) by blue; otherwise, color (i, j) by red.
Therefore, what we want to show becomes that finding a triangle whose 3 edges are colored
by the same color (blue or red).

To see this, consider vertex 1 and its 5 incident edges. There must exist 3 incident
edges of the same color. By the symmectry between blue and red, let us assume that
edges (1, 2), (1, 3), (1, 4) are blue. If one of edges (2, 3), (2, 4), (3, 4) is colored by blue, say
edge (2, 3), then 1, 2, 3 form a triangle with three blue edges. Otherwise, all three edges
(2, 3), (2, 4), (3, 4) are red, then 2, 3, 4 form a triangle with edges all red.

• Definition. A r-edge-coloring of Kn is a function f : E(Kn) → {1, 2, ..., r} which assigns
one of the colors 1, 2, ..., r to each edge of Kn. If it is a 2-edge-coloring, usually we assume
the colores are blue and red.

• Definition. Suppose the edges of a graph are colored by many colors. A k-clique (or
Kk) is monochromatic, if all of its edges are colored by the same color. For example, if
monochromatic Kk uses color blue, then we also call a blue Kk.

• Now it is easy to see that Fact 1 is equivalent to the following: any 2-edge-coloring of K6

contains a monochromatic K3 (a blue K3 or red K3).

The coming fundamental theorem gives a generalization of the above fact.
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• Ramsey’s Thorem. (2-edge-coloring version)

Let k, l ≥ 2 be integers. There exists an integer N such that any 2-edge-coloring of KN

(with the colors blue and red) has a blue Kk or a red Kl.

• The main tool in the proof of Ramsey’s theorem is Pigeonhole Principle.

Pigeonhole Principle. Let A1, A2, ..., Ak be disjoint sets which form a partition of the
groud set X, where |X| = 1 +

∑k
i=1(ai − 1). Then there exists some i such that |Ai| ≥ ai.

• The proof of Ramsey’s theorem. We will show that N can be picked as N =
(
k+l−2
k−1

)
,

where k, l are symmetric in the expression of N , as
(
k+l−2
k−1

)
=
(
k+l−2
l−1

)
.

We proceed by induction on the sum of k+ l to prove the statement: any 2-edge-coloring of
K(k+l−2

k−1 ) has a blue Kk or a red Kl. The base case (k = l = 2) is trivial, as N =
(
k+l−2
k−1

)
=(

2
1

)
= 2.

Now we consider k, l ≥ 2 and assume that the statement holds for any pairs (k′, l′) whose
sum is smaller than k+ l (in particular, the statement holds for pair (k− 1, l) as well as for

pair (k, l − 1)). For the purpose of presentation, write N :=
(
k+l−2
k−1

)
, N1 :=

((k−1)+l−2
(k−1)−1

)
=(

k+l−3
k−2

)
and N2 :=

(k+(l−1)−2
k−1

)
=
(
k+l−3
k−1

)
. Therefore, we get N1 + N2 = N , beacuse of the

identity
(
a−1
b−1
)

+
(
a−1
b

)
=
(
a
b

)
.

Consider an arbitrary 2-edge-coloring of KN . Similar to the proof of “a party of six”, we
pick a vertex u ∈ V (note that this u can be arbitrary!). Then we partition V − {u} into
two disjoint sets A,B, where

A = {x ∈ V − {u} : edge xu is colored by blue}

and
B = {x ∈ V − {u} : edge xu is colored by red}.

Therefore, |A|+|B|+1 = |V | = N = N1+N2, implying that |A|+|B| = 1+(N1−1)+(N2−1).
By Pigeonhold principle, we have either |A| ≥ N1 or |B| ≥ N2.

Case 1: |A| ≥ N1 =
((k−1)+l−2

(k−1)−1
)
.

The vertices of A contains a complete graph K((k−1)+l−2
(k−1)−1 ), whose edges are colored by blue

and red. By induction on this graph for the pair (k − 1, l), set A has either a blue Kk−1 or
a red Kl. If A has a blue Kk−1, notice that all edges between u and A are blue, then this
blue Kk−1 plus vertex u give us a blue Kk. Therefore, in Case 1, there must exist a blue
Kk or a red Kl, as wanted.

Case 2: |B| ≥ N2 =
(k+(l−1)−2

k−1
)
.

Similar to Case 1, the vertices of B contains a complete graph K(k+(l−1)−2
k−1 ). By induction

on this graph for the pair (k, l − 1), set B has either a blue Kk or red Kl−1. Note that all
edges between u and B are red, if B has a red Kl−1, then this Kl−1 plus vertex u give us
a red Kl. Therefore, again in Case 2, there must exist a blue Kk or a red Kl. This finishes
the proof of Ramsey’s theorem.

Graph Ramsey Numbers

5



• We proved the Ramsey’s Theorem that for any integer k, l ≥ 2, there exists an integer N
such that any 2-edge-coloring of KN has a blue Kk or a red Kl. In fact, we show that N
can be N =

(
k+l−2
k−1

)
.

• Definition. For any integers k, l ≥ 2, the Ramsey number R(k, l) denotes the smallest
integer N such that any 2-edge-coloring of KN has a blue Kk or red Kl.

• Let us try to understand the following inequalities:

(i) R(k, l) ≤ L means that any 2-edge-coloring of KL has a blue Kk or red Kl;

(ii) R(k, l) > M means that there exists a 2-edge-coloring of KM containing neither blue
Kk nor red Kl.

• It is very hard to find the exact value of R(k, l), even for small k, l (for example it is not
known what is R(5, 5)). Instead, we will estimate R(k, l) by providing lower/upper bounds.
Recall the meanings of R(k, l) ≤ L and R(k, l) > M .

• Fact 1. We have R(k, l) ≤
(
k+l−2
k−1

)
.

• Fact 2. R(k, l) = R(l, k).

• Fact 3. R(2, l) = l and R(k, 2) = k for all k, l ≥ 2.

• Fact 4. R(3, 3) = 6.

R(3, 3) ≤ 6 follows by the “party of six” problem; R(3, 3) > 5 follows by a 2-edge-coloring
of K5 we constructed in class.

• Fact 5. R(3, 4) = 9.

We show that R(3, 4) > 8 by constructing a graph on 8 vertices which contains no triangle
and no independent set of size 4. Note that an independent set is a graph which has no
edge at all.

And the proof of R(3, 4) ≤ 9 in fact can be generalized to the following:

Theorem. If Ramsey numbers R(k − 1, l) and R(k, l − 1) are both even, then we have
R(k, l) ≤ R(k − 1, l) +R(k, l − 1)− 1.

Note that this is stronger than one of the homework problems.

• Fact 6. It is also known that R(4, 4) = 18, R(4, 5) = 25 and 43 ≤ R(5, 5) ≤ 49. We mention
them without proofs.

• Definition. When k = l, the Ramsey number R(k, k) is called the diagonal Ramsey number.

• In next week, we will show a lower bound of R(k, k).

Note that to show R(k, k) > n, we need to construct a 2-edge-coloring of Kn such that it
has no monochromatic Kk. We will achieve this by probabilistic tools (without explicitly
giving the construction of the desired 2-edge-coloring).
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